International Conference On Medicinal Plants
The Future of Medicinal Plants: From Plant to Medicine
Surabaya, 21-22 July 2010
Organized by
POKJANAS
DAAD
Deutscher Akademischer Austauschdienst
German Academic Exchange Service
PROCEEDING OF
INTERNATIONAL CONFERENCE ON
MEDICINAL PLANTS

in occasion of

the 38th Meeting of National Working Group on Indonesian Medicinal Plant

21-21 July 2010
Surabaya, Indonesia

Advisory Board:
Henk van Wilgenburg
Mona Tawab
Tohru Mitsunaga
De-An Guo
Adrianta Surjadjhana
Kuncoro Foe

Editor:
Elisabeth C. Widjajakusuma

Organizing Committee
FACULTY OF PHARMACY
WIDYA MANDALA CATHOLIC UNIVERSITY

in collaboration with
National Working Group on Indonesian Medicinal Plants
and German Academic Exchange Service
PREFACE

The International Conference on Medicinal Plants in occasion of the 38th Meeting of National Working Group on Medicinal Plant was held on the campus of Widya Mandala Catholic University in Surabaya during 21-22 July 2010. Over 300 participants had many fruitful discussions and exchanges that contributed to the success of conference. The present volume Proceedings (Volume 2) includes the papers presented at the conference and continues where Volume 1 leaves off.

The 192 abstracts that were presented on two days formed the heart of the conference and provided ample opportunity for discussion. Of the total number of presented abstracts, 63 of these are included in the Volume 1 and 58 in this proceedings volume. Both of the Conference Proceedings cover all aspects on key issues related to medicinal uses of plants, their active ingredients and pharmacological effects, production and cultivation of medicinal plants.

We appreciate the contribution of the participants and on behalf of all the conference participants we would like to express our sincere thanks to plenary speakers, Dr. Mona Tawab, Prof. Henk van Wilgenburg, Prof. Tohru Mitsunaga, Prof. De-An Guo, dr. Arijanto Jonosewojo, SpPD FINASIM, Dr. Bambang Prayogo, Mr. Jimmy Sidharta, Ir. Dwi Mayasari Tjahjono, S.Pd, Dipl. Cidesco, Dipl. Cibtac, and everybody who helped to make conference success and especially to our sponsors National Working Group on Indonesian Medicinal Plants (POKJANAS TOI) German Academic Exchange Service (DAAD) PT. Landson PT. Gujati 59 PT. Pasifik Sarana Cantik PT. Herbal Plus PT. Kaliroto May you all be richly rewarded by the LORD.

All in all, the Conference was very successful. The plenary lectures and the progress and special reports bridged the gap between the different fields of the development of medicinal plants, making it possible for non-experts in a given area to gain insight into new areas. Also, included among the speakers were several young scientists, namely, students, who brought new perspectives to their fields. I hope this proceedings will promote the interdisciplinary exchange of knowledge and ideas in medicinal plant and related industries.

Dr.phil.nat. Elisabeth Catherina Widjajakusuma
Conference Chairman
CONTENTS

Preface ii

H. van Wilgenburg

Gas Chromatography-Mass Spectroscopy (GC-MS) based Metabolic Fingerprinting of three Malaysian Ginger (Zingiber officinale Rosc.) 363
Retno A. Budi Muljono, H. J. Mahdi, Ishak

Antibacterial Activity of Marine Sponges Haliclona fascigera against Ralstonia Solanacearum 368
Dian Handayani, Nining, Fatma Sri Wahyuni

A Bioactive Compound of Lactarane Sesquiterpene Velleral from the Stem Bark of Drymis beccariana Gibbs. (Winteraceae) 373
Bimo B. Santoso, Markus H. Langsa and Rina Moge

Preliminary Study on Phaeomeria sp. Economic Potency 378
Hanifa Marisa, Rahmiwati, Hidayatullah

Vasoactive Effect of Connarus grandis Leaves Extracts on Different Strains of Rats 382
Armenia, Helsa Devina, M.Z.A. Sattar

Seed Germination and Medical Properties of Areca catechu L. 391
Rony Irawanto

The Bioactivity Test of Mangosteen (Garcinia mangostana L. Guttiferae) Pericarp against Staphylococcus aureus and Escherichia coli Bacteria 398
Pertamawati, Nuralih

Phytochemical Study of Ketapang Bark (Terminalia catappa L.) 403
Ade Zuhrotun, Asep Gana Suganda, As'ari Nawawi

ISBN : 978-602-96839-3-6(vol 2)
Identification of Flavonoids in *Cabomba furcata* from Tasik Chini, Pahang Malaysia
Kurnia Harlina Dewi, Masturah Markom, Sity Aishah, Siti Rozaimah, Sheikh Abdullah, Mushrifah Idris

Anti-Obesity of Mouse by Sniffing Cypress Essential Oil
Nasa Matsushima, Tohru Mitsunaga

Effect of Artocarpus altillis Decoction Unripe on Advanced Glycation and Products in Hiperglycemia Induced Rats (Rattus norvegicus)
Fusiti, Isnaini

Antioxidant Activity of Flavonoids Compound from Kelor Leaves (*Moringa oleifera*)
Marsah Rahmawati Utami, Lusiani Dewi Assaat, Supratno, Jorion Romengga, Yusridah Hasibuan, Irmanida Batubara

Docking Study and Structure Modification of Ethyl p-Methoxycinnamate Isolated from *Kaempferia galanga* Linn. To Enhance Its Selectivity on Cyclooxygenase-2
Juni Ekowati, Sukardiman, Shigeru Sasaki, Kimio Higashiyama, Siswandono, Tutuk Budiatii

Prospect of a Combination Therapy of Herbs and Prebiotic as an Alternative Control Bacterial Diseases in Freshwater Aquaculture
Angela Mariana Lusiastuti, E.H. Hardi, Tanbiyaskur, A.H. Condro Haditomo

Sub Acute Toxicity Test of Ethanol Extract of Betel Palm (*Areca catechu* L.) on Wistar Strain Albino Rat (*Rattus norvegicus*)
Wiwien Sugih Utami, Nuri, Yudi Wicaksono

Survey on Piperaceae Family at Kota Agung Village, Lahat District, South Sumatera
Hanifa Marisa, Salni

The Development of Tablet Formulation of *Artocarpus champeden* Stembark Extract as Antimalarial Drug
Achmad Fuad Hafid, Andang Miatmoko, Agriana Rosmalina Hidayati, Lidya Tumewu, Achmad Radjaram, Aty Widyawaruyanti

ISBN : 978-602-96839-3-6(vol 2)
Testing and Transdermal’s Formulation of Leaf Extract *Pterocarpus indicus* the Shade Street to Lower Blood Sugar Rate
Antonius, M. Lukman, E. Natania, S. Mariaty

Utilization of Traditional Medicine as Stamina Enhancer in Sundanese Communities at Cicomet Village, Banten Kidul
Francisca Murti Setyowati, Wardah

Effect of Some Selected Herbal Plant Extracts as Potential Dental Plaque Biofilm Inhibitors
Triana Hertiani, Sylvia Utami Tunjung Pratiwi, Muhammad Herianto, Aini Febriana

Anti Inflamatory Activity of Ethanolic Extract of Leaves of Jarak Pagar (*Jatropha curcas*) and Neutrophils Profile in Rats Foot Induced Carrageenan
Hanif Nasiatul Baroroh, Warsinah

PDMAA Coated Capillaries in Reducing Protein Adsorption
Adhitasari Suratman, Herman Wätzig

Medical Plant Biodiversity in Dayak Communities Living in Kahayan Bulu Utara, Gunung Mas Regency, Central Kalimantan
Wardah, Francisca Murti Setyowati

Softcoral (*Sinularia dura, Lobophytum structum, Sarcophyton roseum*) Fragmentation in Thousand Island as Potential Source of Natural Product
Hefni Subhan, Dedi Soedharma, Dondy Arafat, Mujizat Kawroe

Ethnopharmacology Study and Identification of Chemical Compounds of Herbal Medicines from South Sulawesi Affecting the Central Nervous System
Aktsar Roskiana, Asni Amin, Iskandar Zulkarnain

Microscopic Identification and TLC Profile in Jamu for treatment of Uric Acid
Asia Hafid, Asni Amin, Hasnaeni, Virsa Handayani

Ethnopharmacy of Herbal Medicine Studies from Wakatobi in South-East Sulawesi
Asni Amin, Aktsar Roskiana, Waode atian Naim
Pharmacognostic Study and of Chemical Compound and Caracterization of n-Hexane Extract of Asian Pigeon Wings Leaf (*Clitoria ternatea* L.)
Rusli, Abd. Kadir, Nasruddin Kamarullah, Asni Amin

544

A Review: Feasibility Study of Eugenol Herbal Extract as Post Gingival Curettage Treatment
Roesanto, Liliek S. Hermanu, David A. M.

549

Formulation of Cola (*Cola nitida* A. Chev) Effervescent Tablet
Teguh Widodo, Alisyahbana, Taufik Hidayat

552

Anti-inflammatory and Analgesic Effect of Ethanol Extract of Gedi Leaf (*Abelmoschus manihot* L. *Medik*) Compared to Diclofenac Sodium in Paw Edema Rat
Enny Rohmawaty, Herri S Sastramihardja, Kuswinarti

557

Biological Activities and Development of Herbal Products from *Sonneratia caseolaris* L. *Engl.*
Enih Rosamah, IrawanWijaya Kusuma, and Farida Aryani

565

Vitex pubescens and *Terminalia catappa* plant species from Kalimantan as an Anti dental Caries Agent
Harlinda Kuspradini, Irmanida Batubara, Tohru Mitsunaga

571

Improvement Characteristics of Curcuma Tamarind Traditional Jamu by Addition of Thickening Agent
Krishna Purnawan Candra

577

Oxidation and Its Relation Between *in vitro* and *in vivo*
Lukman Muslimin, Habibie, Gemini Alam, Syaharuddin Kasyim, Mufidah M., Marianti A. Manggau

582

Antidiarrheal Activity of Ethanol Extract of Sarang Semut (*Myrmecodia tuberosa*) in Experimental Animals
Nurlely, Revina A. Y., Anna Y. S., Yuyun S.

589

Pests of *Steleocharpus burahol* (Blume) Hook. F.&Thomson in Purwodadi Botanical Garden
Solikin

593

vi

ISBN : 978-602-96839-3-6(vol 2)
Preparing and Implementing Module on Herbal Medicine for Medical Student
Abraham Simatupang, Hayati Siregar, Mulyadi Djojosaputro

Anti-hypercholesterolemic Activities of Artocarpus altillis Leaves Infusion
Churiyah, Sri Ningsih

Callus Induction of Sonchus arvensis L. and Its In-Vitro Antiplasmodial Activity
Dwi Kusuma Wahyuni, Tutik Sri Wahyuni, Wiwied Ekasari, Edy Setiti Wida Utami

Detection of Toxic Substances of Swietenia mahagoni Jacq. Stem Bark by Artemia salina Bioassay
Eka Prasasti Nur Rachmani, Tuti Sri Suhesti, Nuryanti

Preliminary Screening of Marine Algae from South Sulawesi Coast for Cytotoxic Activity using Brine Shrimp Artemia salina Lethality Test
Elmi Nurhaidah Zainuddin

Study of Cell and Callus Culture of Erythrina variegata L. for Secondary Metabolite Production as Antimalaria Herbal Medicine
Suseno Amien, Tati Herlina

Acute Toxicity Study of the Methanol Extract of Rhodomyrtus tomentosa Leaves in mice
Sutomo, Mudakir, Arnida, Yuwono

Cytotoxicity Evaluation of Medicinal Plant Andrographis paniculata in Breast Cancer Cell Lines
Tarwadi, Churiyah, Fery Azis Wijaya, Pendrianto, Olive Bunga Pongtuluran, Fifit Juniarti, Rifatul Wijdhati

Separation of chloroform fraction of stem bark of Brugruiera gymnorrhiza using bioassay guided fractionation and cytotoxic effects on cancer cell lines
Warsinah, Hartiwi Diastuti, Hanif Nasiatul Baroroh

Optimization of Extraction of Solvent using Simplex Method with Axial Design to Obtain Phyllanthus niruri HPLC Profile
Wulan Tri Wahyuni, Latifah K. Darusman, Aji Hamim Wigena
Formulation of Herb Pills of *Stenochlaena palustris*: An Overview of Fineness Variations of Powders, Concentration of Dissintegrant, and Drying Time
Isnaini, Yugo Susanto, Sri Nurul Munjiah
659

Detection of Chloramphenicol Residue in Shrimp (*Penaeus monodon*) by High Performance Liquid Chromatography
Caroline, Senny Yesery Esar, Kuncoro Foe
667

Technique for Purification of Polychlorinated Terphenyl in Raw Product of Synthesis
Atmanto Heru Wibowo, Muefit Bahadir
671

Study of clove leaves volatile oil and its potential as growth inhibition against *Streptococcus mutans* and *Streptococcus pyogenes*
M. Ervina, D.A. Limyati, L. Soegianto
679

Simultaneous Determination of Sulfametoxazole and Trimetoprim Oral Suspension with Branded Name and Generic Name by High Performance Liquid Chromatography (HPLC)
Effendy De Lux Putra, Muchlisyam
683

Optimization Formula of *Aloe vera* L. Powder Extract Effervescent Granules
Yuliana Hidayat, Lannie Hadisoewignyo
691

Mouthwash Formulation Development of *Piper betle* Extract and Activity Test against *Streptococcus mutans*
Rachmat Mauludin, Sasanti Tarini Darijanto, Irda Fidrianny, Ryan Rinaldi
696

Simultaneous Determination of Mefenamic Acid, Phenylbutazon, Diclofenac Sodium, Paracetamol, and Piroxicam Traditional Medicine by TLC
Emi Sukarti, Senny Yesery Esar
701

Neuroprotective of *Centella asiatica* toward BDNF (Brain-Derived Neurotropic Factor) Level, TNFα, NFKB and Apoptosis on Neuronal Cells Culture LPS-Induced
Husnul Khotimah, Wibi Riawan, Umi Kalsum
706

Potency of Dragon Blood (*Daemonorop draco*) as Medicinal Plant, and Its Conservation in Jambi Province-Indonesia
Zuraaida
714
SOFT CORAL (SINULARIA DURA, LOBOPHYTUM STRICTUM, SARCOPHYTON ROSEUM) FRAGMENTATION IN THOUSAND ISLAND AS POTENTIAL SOURCE OF NATURAL PRODUCT

Hefni Effendi¹, Beginer Subhan², Dedi Soedharmar², Donyd Arafat², Mujizat Kawaroe²

¹Centre for Environmental Research, Bogor Agricultural University (IPB), Dramaga, Bogor
²Department of Marine Science and Technology, IPB, Dramaga, Bogor
Corresponding author, e-mail : hefni_effendi@yahoo.com

ABSTRACT: Research aim was to determine survival rate and growth rate of fragmented-soft coral (Sinularia dura, Lobophytum strictum, and Sarcophyton roseum). Fragmentation and transplantation of soft coral were carried out onshore and underwater. Well prepared research will support the success of transplantation. S. dura and L. strictum showed 100% survival rate. However S. roseum indicated low survival rate. This was caused by (a) soft morphological structure of S. roseum, hence it was vulnerable to swift away before attaching firmly to the sediment, (b) relatively strong current, (c) unsuccessful acclimatization, (d) predator. Growth rate of L. strictum was faster than that of S. dura. The result of the research revealed that S. dura and L. strictum were able to be as raw stock for further research on their bioactive substance content, due to the success of their transplantation.

Keywords: Transplantation, fragmentation, Sinularia dura, Lobophytum strictum, Sarcophyton roseum

INTRODUCTION

Background: Coral reef is a unique ecosystem of tropical waters with high level of productivity, high biotic diversity and high aesthetic value, but including one of the most sensitive to environmental changes. Biophysical role of coral reef ecosystems is diverse, such as shelter, feeding and breeding for diverse marine life. Besides acting as the retaining waves, coral reef functions as producer of the biological resources of high economic value. Reef area is one of important tropical waters producing natural resources has a great potential. Indonesia has the marine living resources with high diversity, but has not been used optimally.

There are a number of marine resources which have the potential to be harvested their bioactive compounds, such as: microalgae, macroalgae, soft corals, echinoderms, molluscs, crustaceans, fish and sponges. Soft corals are part of an important coral reef ecosystems (Benayahu, 1985; Sammarco and Coll, 1998), the second largest component after a hard coral (Manuputty, 1996), playing an important role in the ecology of coral reefs. In the Thousand Islands, the kind of soft corals found are 103 species from four families, and spread over 11 islands from south to north Thousand Islands (Manuputty, 1992). The biochemist gave the attention to soft corals as producer of bioactive compounds. Furthermore, new compounds are expected to be encountered for industry and pharmaceuticals (Weinheimer et al., 1977).

Research on marine natural products is a relatively new research field. Cultivation with transplant technique is a measure for providing soft corals stock instead of harvesting from the wild.

b. Analyzing the growth rate of soft coral S. dura, L. strictum and S. roseum.
METHODS
Soft coral transplantation research with artificial fragmentation was conducted eight months (June 2007 - October 2007), at Pramuka Island, Kepulauan Seribu (Figure 1).

Research was conducted on soft corals (Octocorallia: Alcyonacea) Lobophytum strictum, Sarcophyton roseum and Sinularia dura (Bayer, 1951; Manuputty, 2002; Mather and Bannet, 1993; Verseveldt, 1982) (Figure 2). Seedlings were taken from the soft coral around the Pramuka island waters at a depth of 3-7 m. High abundance of large soft coral colonies was selected as seed for transplant, placed on a rack of transplant (Figure 3). Stages of the research activities are:

- Determination of soft coral planting locations based on physical factors that support the success of transplantation.
- Search soft corals as the parent seed and the process of acclimatization to avoid stress from the cutting of soft coral (fragmentation).
- Planting seeds of coral transplants on an open system in Kepulauan Seribu.
• Monthly monitoring of survival rate and growth of softcorals and physical appearance of soft coral.

![Transplantation rack with net.](image)

Figure 3. Transplantation rack with net.

Softcoral Survival Rate

Softcoral growth was measured every month by using caliper. Survival rate of transplanted soft coral colonies are measured with the following formula:

\[SR = \left(\frac{N_t}{N_0} \right) \times 100\% \]

- **SR** = Survival rate (%)
- **Nt** = Number of life soft coral colonies at the end of experiment
- **No** = Number of soft coral colonies at the onset of experiment

Calculation of survival rates is needed to determine the percentage success rate of transplants by knowing the number of living corals since the study began.

Softcoral Growth

Growth achievement of transplanted softcoral was measured by the following formula:

\[\beta = L_t - L_o \]

- **\(\beta \)** = Growth achievement of transplanted softcoral
- **Lt** = Average size increment after month - \(t \)
- **Lo** = Average size of the initial research

To maintain data accuracy, measurements were done on the colonies that have been characterized and mapped previously. Increment of vertical was done by measuring the highest bud. Increment of horizontal was done by measuring the widest bud. Measurement of the transplanted coral growth rate is done by using the formula:
\[
\beta = \frac{L_{t+1} - L_t}{t_{i+1} + t_i}
\]

\(\beta\) = The rate of accretion of coral fragments transplanted
\(L_{t+1}\) = Average length or width of the fragment at time \(i + 1\)
\(L_t\) = Average fragment length or width of fragment at time \(i\)
\(t_{i+1}\) = Time \(i + 1\)
\(t_i\) = Time \(i\)

RESULT AND DISCUSSION
Preparation of materials and tools is one of the supporters of success in transplantation activity. Stages of preparation were carried out on land, and some in the bottom waters by SCUBA diving equipment. Preparation experiment rack assembly, preparation and installation of the substrate can be seen in Figure 5.

Softcoral Aclimatitation
Softcoral seed collection was conducted in the waters having a good bottom substrate. Soft coral usually appears in surrounding coral reefs, rocks, and dead coral, and adheres to the substrate (Benayahu and Loya, 1981; Sorokin, 1993). Cutting was performed in the bottom waters to reduce stress (Figure 6). Transportation affects the success of transplantation. Transportation on the deck of the ship which is protected for one hour, is not significantly different with water transportation. When soft corals exposed to air for two hours, the success rate between 50-90% and when exposed to air for three hours, the level of success will be 40-70% (Harrior and Fisk, 1988).
To reduce stress, soft corals to be transplanted were carefully removed and placed in perforated plastic containers and transportation process was carried out in water. This operation should only spend 30 minutes for each pile of rocks to be moved. Soft corals try to maintain the stability of their body metabolism by secreting mucus as consequence of cutting wounds. To reduce stress on the reef, an adjustment effort is necessary (Clark and Edwards, 199; Quinn and Sammarco, 1988).

Survival Rate

Survival rate depends on the accuracy of the method, especially in the treatment of fragments, biological factors such as physiology of transplanted corals and response to environmental conditions (Arvedlund, 2001; Clark and Maldive, 1995). Survival rate was calculated by the percentage of live soft corals from each treatment. Survival rate is calculated starting from the first month until the end of the study.

Soft coral survival rate is relatively high. *S. dura* and *L. strictum* had survival rate of 100% during four months of observation (Figure 7). *S. roseum* showed low survival rate (26.7%). This is because (a) very soft physical form, thus *S. roseum* was vulnerable to swift away before attaching firmly to the sediment, (b) the current was quite strong, (c) failure of acclimatization process, and (d) presence of predators (Figure 8) (Nybakken, 1992; Tursch and Tursch, 1982). Soft coral *S. dura* and *L. strictum* have strong spicule shape, compared with *S. roseum*.

![Figure 6. Softcoral strain selection](image)

![Figure 7. Softcoral survival rate (%).](image)
Generally expressed a successful transplant from a biological standpoint, if the survival rates of various treatments ranged between 50-100%, when transplanted to the similar habitats in which they were collected (Harriot and Fisk, 1988).

Softcoral Growth

In general, growth is defined as the change in the length, width, and weight versus time. Measurements were performed on the growth of *S. dura* and *L. strictum*, since it has a high survival rate. For *S. roseum* only survival was analyzed. It should be further studied the method of good binding of *S. roseum*. Softcorals can grow from each section of fragments.

Growth observations were performed four months (June - October 2007). Growth in the early phase of maintenance was slow, but then growth faster (Effendie, 1997). This is because in the first and second weeks underwent physiological disorders. This physiological disorder was due to wounds caused by cutting. *L. strictum* is soft leather coral, which has skin and a lot of spicules (Fossa and Nilsen, 1998). This is evidenced by the straight and solid fragments after attaching to the substrate.

Sinularia dura

Observations of softcoral growth for four months, starting from the soft coral fragments were bound to the substrate. Planting transplants were performed at the depth of 3 m and 10 m.

Length of soft coral growth rate varied from 0.77 cm/month, 0.34 cm/month, and 0.32 cm/month, width growths were 0.80 cm/month, 0.32 cm/month, and 0.61 cm/month, for three softcoral (Figure 9). Decrease the rate of growth (July-August) can be expected is an implication of the acclimatization and stress from the cutting (fragmentation).
Stress is a condition caused by a change in the ecosystem or factors that cause decline in productivity. Stress period fragments of *S. dura* at a depth of 3 m lasted for two weeks, after which this species again showed their colors. Stress causes the color of *S. dura* pale and shrunken. When soft corals began to bloom and color, they have passed phase of acclimatization.

When the cuts were made on soft corals, artificial fragments react by producing lots of mucus. This mucus will isolate the fragment from the water, thus preventing gas exchange, which in turn disrupt the process of photosynthesis (Benayahu and Loya, 1981; Clark and Edwards, 1995).

At the depth of 10 m, growth rate of length and width in the first month was less than those at the depth of 3 m. Length growth rate during the first month was 0.64 cm/month, second month of 0.23 cm/month, and the third month of 0.39 cm/month (Figure 10).

S. dura adaptation processes in the depth of 10 m lasted 14-25 days, this proves the existence of a less supportive environment pressure during acclimatization process.

Environmental pressure caused by fish and other predators biota, and physical factors caused several *S. dura* stress and shrink in the second month of observation. To reduce stress it is needed adjustment effort. If successful, the acclimatization process will bring soft corals back in homeostatic conditions, but if not successful then the biota will stress again with the possibility of even greater stress. Most likely *S. dura* at a depth of 10 m experienced longer stress.
Lobophytum Strictum

The growth rate of *L. strictum* at the beginning of the study was 0.67 cm/month and 0.88 cm/month. Length growth rate has increased over the next month and then decreased to 0.50 cm/month. Width growth has increased again in three months (0.65 cm/month) (Figure 11). In general, the growth rate of *L. strictum* was better than *S. dura*. This shows that survival of *L. strictum* was better used as animal transplants.

![Growth rate graph](image)

Figure 11. Growth rate of *Lobophytum strictum* at the depth of 3 m.

Differences in growth rate were made possible by the existence of differences characteristics among species. There are polyps that can be withdrawn or outstretched. This is a morphological characteristic that can distinguish between genera (types) with each other. Another difference is anatomically, ie the content of spiculation/sklerit which is a proponent and shaper of the body texture (Manuputty, 1996; Fossa and Nilsen, 1998).

From four months observation the length and width growth of *L. strictum* at the depth of 10 m was not much different (Figure 12). At the beginning of the study length growth rate of 1.09 cm/month and width of 0.76 cm/month. Then at the end of the study length growth rate of 0.76 cm/month and width of 0.81 cm/month.

![Growth rate graph](image)

Figure 12. Growth rate of *Lobophytum strictum* at the depth of 10 m.

Based on Figure 12, in the second month, the growth rate of coral declined. After going through the phase of acclimatization to the environment, soft corals were back to normal condition. It can be seen from the shape and color of coral fragments were returned to normal. Octocorallia colonies generally have a beautiful color. These colors are produced by a number of zooxanthellae that live inside coral tissue, which produces the brown pigment, yellow, green and so forth (Manuputty, 1996). *S. dura* and *L. strictum* stock can

520
be used as preparation for bioactive substance research, because of the success of their transplantation process (Manuputty, 1991; Weinheimer et al., 1977).

CONCLUSION

Transplantation activities with artificial fragmentation of soft corals were made up of various activities on land and at sea. Proper preparation will support the success of the soft coral transplantation.

S. dura and *L. strictum* showed 100% survival rate. However, *S. roseum* showed low survival rate. Growth rate of *S. dura* and *L. strictum* on first and second weeks declined, this is the period of tissue repair on the soft coral fragments. Growth of *L. strictum* was faster than *S. dura*.

S. dura and *L. strictum* stock can be used as preparation for bioactive substance research, because of their success of transplantation process.

ACKNOWLEDGMENTS

This research was funded by the Directorate of Research and Community Service, Directorate General of Higher Education, through competitive grant.

REFERENCES

